Topics for Qualifying Exam in Combinatorics

I. Enumeration
A. Selections with and without repetitions (combinations \& permutations)
B. Partitions

1. Stirling numbers of the first and second kind
C. Principle of Inclusion-Exclusion
2. Surjections
3. Derangements
4. Euler function
D. Generating functions (ordinary and exponential)
5. For combinations and permutations
6. Solutions of recurrence relations
7. Catalan numbers
E. Pólya theory
II. Combinatorial designs
A. Design parameters
B. Balanced incomplete block designs (BIBDs)
C. Partially-balanced incomplete balanced designs (PBIBDs)
D. Triple systems
E. Resolvable designs
F. Finite geometries
8. Affine geometries
9. Projective geometries
10. Partial geometries
G. Latin squares
11. Orthogonality
III. Matroids
A. Independence, basis, spanning, and cycle systems; rank function and closure operator
12. The definition in terms of each of these
13. Proofs of equivalences of these definitions
B. Duality
C. Representability
D. Greedy algorithm
IV. Pigeonhole principle and Ramsey's theorem
V. Minimax theory
A. Max-flow-min-cut theorem
B. Optimization algorithms
C. Menger's theorem (see VI.B.2)
D. P. Hall Theorem (marriage-, matching-problems, etc.)
E. $\{0,1\}$-Matrices
VI. Graph theory
A. Basic notions
14. Euler paths/circuits
15. Hamilton paths/circuits
16. Adjacency and incidence matrices
a. Characteristic polynomials and graph spectra
17. Forests and trees
18. Graph products (cartesian, categorical, weak, lexicogrphaphic)
19. Cycle and cocycle spaces
B. Connectivity
20. Biconnectivity
21. Menger's and Whitney's characterization of m-connectivity
22. Atoms and fragments
C. Planarity
23. Euler's formula
24. Kuratowski's theorem
25. Tilings
D. Topological graph theory
26. Edmond's embedding theorem
27. Heawood's theorem
E. Chromatic graph theory
28. Color-critical graphs
29. Four-color theorem
30. Edge-colorings
F. Algebraic graph theory
31. Vertex- and edge-automorphism groups
32. Arc-transitivity
33. Distance-regular and distance-transitive graphs
34. Cayley graphs
35. Properties of special graphs
a. n-Cages (Heawood graph)
b. Johnson graphs
c. Coxeter graph
36. Automorphism groups of graph products

You should be able to state all definition and basic results for the topics in the above list. You should be able to construct examples that illustrate these definitions and results. You should be able to apply these results to solve specific problems. Finally, you should be prepared to prove any of basic results that have reasonably short proofs. Specifically you will not be expected to prove:

Vizing's theorem
Max-flow-min-cut theorem
Menger's theorem
Heawood's theorem
Four-color theorem
Hamilton path theorems
Kuratowski's theorem
Ramsey's theorem

All of the material in this out line can be found in one or more of the following:

References

E.F. Beckenbach (editor), Applied Combinatorial

Mathematics, (Chapters 3, 5, 12, 13)
J.A. Bondy \& U.S.R. Murty, Graph Theory with Applications
R. A. Brualdi, Introductory Combinatorics
R. Diestel, Graph Theory, (Chapters 1-6,10)
C.D. Godsil \& G. Royle, Algebraic Graph Theory, (Chapters 1, 2, 3, 4, 6)
J.E. Graver \& M.E. Watkins, Combinatorics with Emphasis on the Theory of Graphs
W. Imrich \& S. Klavzar, Product Graphs, (Chapters 1, 4, 5, 6)
C.L. Liu, Introduction to Combinatorial Mathematics, (all but Chapters 12 \& 13)
R.P. Stanley, Enumerative Combinatorics, (Volume I)
H.J. Ryser, Combinatorial Mathematics, (all but Chapter 9)

